As a promising solution for handling super dense wireless networks, wireless local area networks (WLANs) have been intensively considered due to their wide availability. However, the contention-based MAC protocol in WLANs should be modified because of its inefficiency. To this end, we consider a recently proposed novel MAC protocol called the renewal access protocol (RAP). With the RAP, we analyze two strategies for resolving collisions efficiently and achieving optimal throughput performance in super dense WLANs: strategies without and with grouping. First, we analyze the asymptotic behavior of the RAP itself (i.e., without grouping) as the number of terminals goes to infinity. We show that the RAP can achieve optimal throughput even in super dense WLANs and the relevant optimal access probability can be derived in a closed form. Second, we propose a grouping strategy in the RAP called the grouped RAP (G-RAP). While a grouping strategy in the IEEE 802.11ah standard is based on time division, our G-RAP is based on transmission attempts. So the G-RAP does not waste channel resources. We show that the G-RAP achieves the optimal network throughput for any group structure if terminals use the optimal access probability that we derive. Our analytical results are validated by simulation.
KSP Keywords
Access protocol, Contention-based, Dense WLANs, Dense Wireless Networks, Grouping strategy, IEEE 802.11ah, Local Area Network(LAN), MAC protocol, Network throughput, Optimal throughput, Performance Optimization
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.