Evaluation of coding efficiency is traditionally modeled as a continuous rate-distortion (R-D) function, where the peak signal-To-noise ratio (PSNR) is adopted as the quality measure. Although the PSNR-versus-bitrate curve offers some useful tradeoff information between video quality and coding bit-rates, it does not take human perceptual experience into account. In this work, by following the recent image/video quality assessment framework based on the just-noticeable-difference (JND) notion, we conduct a subjective test for HEVC (High Efficiency Video Codec) video to measure the QP value that lies in the boundary of perceptually lossless and lossy coded bit streams for each human subject. This is also known as the first JND point. It is observed that the statistics of the first JND points of 30 subjects follows the normal distribution for a great majority of test sequences. Finally, a machine-learning approach is proposed to predict the mean of the group-based JND distribution based on extracted video features. It is shown by experimental results that the mean JND point can be predicted accurately.
KSP Keywords
Bit rate, Coding efficiency, High Efficiency Video coding(HEVC), Human subjects, Learning approach, Normal Distribution, Peak-Signal-to-Noise-Ratio(PSNR), Quality measure, Rate-Distortion, Signal noise ratio(SNR), Subjective test
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.