ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Investigation of Transmission Performance in Multi-IFoF based Mobile Fronthaul with Dispersion-induced Intermixing Noise Mitigation
Cited 31 time in scopus Download 27 time Share share facebook twitter linkedin kakaostory
Authors
Minkyu Sung, Seung-Hyun Cho, Hwan Seok Chung, Sun Me Kim, Jong Hyun Lee
Issue Date
2017-04
Citation
Optics Express, v.25, no.8, pp.9346-9357
ISSN
1094-4087
Publisher
Optical Society of America(OSA)
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.1364/OE.25.009346
Abstract
We demonstrate the improvement of the transmission performance based on intermixing noise mitigation techniques in a multiple intermediate-frequency-over-fiber (IFoF) based mobile fronthaul. The interaction between fiber chromatic dispersion and frequency chirp of the directly modulated laser generates the second-order distortion that degrades the performance of multi-IFoF transmission system. To avoid second-order distortion, we use intermediate frequency (IF) spacing optimization and octave-confined frequency plan schemes in which intermixing noise would be generated in the out of signal band and would not affect the quality of transmitted signal. For bandwidth efficient transmission of radio signal over mobile fronthaul link, we employ the dispersion compensation technique to suppress the intermixing noise sufficiently. For realization of the multi-IFoF based mobile fronthaul, we experimentally investigate the transmission performances of 48-, 72- and 144-IF carriers of the long term evolution-advanced (LTE-A) signals mapped with 64-quadrature amplitude modulation (QAM). It is clearly observed that the intermixing noise is suppressed owing to dispersion compensation technique and overall system performances are improved by IF spacing optimization and octave-confined frequency plan. As a result, we successfully transmit 144-IF carriers of the LTE-A signal with less than 8% error vector magnitude (EVM) over 20-km single-mode fiber (SMF) within only 3 GHz bandwidth.
KSP Keywords
Bandwidth efficient, Chromatic dispersion(CD), Directly modulated laser(DML), Dispersion compensation, Fiber chromatic dispersion, Long term Evolution(LTE), Long term evolution-advanced(LTE-A), Mobile fronthaul, Overall system, Quadrature-amplitude modulation(QAM), Radio Signal
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
CC BY