17HS5600, The development of skin adhesive patches for the monitoring and prediction of mental disorders,
Seunghwan Kim
Abstract
Using doubly-clamped silicon (Si) microbeam resonators, we demonstrate sub-attogram per Hertz (ag/Hz) mass sensitivity, which is extremely high sensitivity achieved by micro-scale MEMS mass sensors. We also characterize unusual buckling phenomena of the resonators. The thin-film based resonator is composed of a Si microbeam surrounded by silicon nitride (SiN) anchors, which significantly improve performance by providing fixation on the microbeam and stabilizing oscillating motion. Here, we introduce two fabrication techniques to further improve the mass sensitivity. First, we minimize surface stress by depositing a sacrificial SiN layer, which prevents damage on the Si microbeam. Second, we modify anchor structure to fiind optimal design that allows the microbeam to oscillate in quasi-one dimensional mode while achieving high quality factor. Mass loading is conducted by depositing Au/Ti thin films on the local area of the microbeam surface. Using sequential mass loading, we test effects of changing beam dimensions, position of mass loading, and distribution of a metal film on the mass sensitivity. In addition, we demonstrate that microbeams suffer local micro-buckling and global buckling by excessive mass loading, which are induced by two different mechanisms. We also find that the critical buckling length is increased by additional support from the anchors.
KSP Keywords
Critical buckling length, Fabrication techniques, Global buckling, High Sensitivity, High quality factor, Mass loading, Mass sensing, Mass sensor, Micro-scale, One-dimensional, Quality-factor(Q-factor)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.