In this paper, Epitaxial (Epi) Junction Termination Extension (JTE) technique for silicon carbide (SiC) power device is presented. Unlike conventional JTE, the Epi-JTE doesn't require high temperature (about 500°C) implantation process. Thus, it doesn't require high temperature (about 1700°C) process for implanted dose activation and surface defect curing. Therefore, the manufacturing cost will be decreased. Also, the fabrication process is very simple because the dose of the JTE is controlled by epitaxy growth. The blocking characteristic is analyzed through 2Dsimulation for the proposed Epi-JTE. In addition, the effect was validated by experiment of fabricated SiC device with the Single-Zone-Epi-JTE. As a result, it has blocking capability of 79.4% compared to ideal parallel-plane junction breakdown.
KSP Keywords
Blocking capability, Epitaxy growth, Fabrication process, High Temperature, Junction termination extension(JTE), SiC device, SiC power devices, Surface defects, manufacturing cost, silicon carbide(3C-SiC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.