본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수 기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.
KSP 제안 키워드
Knowledge transfer, knowledge distillation
저작권정책 안내문
한국전자동신연구원 지식공유플랫폼 저작권정책
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.