Reduced graphene oxide (rGO) sheets have received great attention as a key element for thin barrier films that block the permeation of water vapor and other gases. However, it remains a challenge to prepare the rGO-based barrier films on plastic substrates through a chemically benign and low temperature fabrication route. Toxic chemicals or high temperature thermal treatments that are widely used for preparing rGO need to be avoided because they can damage the underlying plastic substrates. In this study, we report the fabrication of rGO/TiO2 composite films via an eco-friendly and low temperature ultraviolet (UV) photoreduction process and demonstrate their enhanced gas barrier properties by measuring water vapor transmission rates (WVTRs). When photocatalytic TiO2 nanoparticles are employed, UV exposure reduces the GO/TiO2 composite solution to form rGO/TiO2, which is subsequently deposited on plastic substrates. The rGO/TiO2 composites become resistant to water absorption because the UV photoreduction of GO/TiO2 effectively removes most polar groups on the GO sheets. We confirmed that rGO/TiO2 composites were successfully deposited onto the plastic substrate through a solution process and the barrier films led to a substantial reduction in WVTRs of the substrate. Our strategy for preparing graphene-based thin barrier films by using a UV photoreduction process enables the fabrication of solution-processed graphene-based encapsulation layers on plastic substrates with an eco-friendly and low temperature fabrication method.
KSP Keywords
Composite film, Eco-friendly, Fabrication method, GO sheets, Gas barrier properties, High Temperature, Key Element, Low temperature fabrication, Plastic substrate, Polar group, Solution-processed
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.