ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article ECG-based Biometric Authentication Using Random Forest
Cited - time in scopus Download 12 time Share share facebook twitter linkedin kakaostory
Authors
Jeongkyun Kim, Lee Kang Bok, Hong Sang Gi
Issue Date
201706
Source
전자공학회논문지, v.54 no.6, pp.100-105
ISSN
2287-5026
Publisher
대한전자공학회 (IEEK)
DOI
https://dx.doi.org/10.5573/ieie.2017.54.6.100
Project Code
17ZH1300, Development of infra-less PDR based connected helmet system for augmented cognition, Lee Kang Bok
Abstract
본 논문은 개인 인증 알고리즘에 관한 것으로 심전도를 이용한 생체 인증 방식은 특정 보정기준점을 추출하는 방법과 그렇지 않은 방법으로 분류할 수 있으며 본 논문에서 제안하는 방법은 특정 보정기준점을 추출하지 않는 방법으로 이산 코사인 변환과 랜덤 포레스트 분류기를 사용하였다. 심전도 신호는 R-Peak 점을 기준으로 단일 심박으로 나누었으며 각 심박의 특징 추출을 위해 이산 코사인 변환을 적용하였다. 이산 코사인 변환 계수는 정보가 저주파에 집중되는 특성이 있으므로 초기 저주파에 해당하는 40까지 값을 특징으로 랜덤 포레스트 분류기를 구성하였다. 랜덤 포레스트는 의사결정 트리의 앙상블 분류기로 결정 트리를 기본으로 하고 있으므로 빠른 학습 속도와 많은 양의 데이터 처리 능력, 다양한 클래스를 분류할 수 있어 실생활에 적용 가능하며 무엇보다 ID의 승인과 거절을 위한 임계값을 분류기 내부에서 조절할 수 있어 오 분류에 강건한 알고리즘을 구성할 수 있다. 18개의 심전도 파일로 구성된 MIT-BIT Normal Sinus Rhythm 데이터베이스를 선정하여 성능을 평가하였으며 99.99%의 심전도 인식률을 보였다.
KSP Keywords
R-peak, Sinus rhythm(SR), normal sinus rhythm