In this paper, we propose a phonetic state relation graph regularized Deep Neural Network (DNN) for a robust acoustic model. A DNN-based acoustic model is trained in terms of minimizing a cost function that is usually penalized by regularizations. Regularization generally reflects prior knowledge that plays a role in constraining the model parameter space. In DNN-based acoustic models, various regularizations have been proposed to improve robustness. However, most approaches do not handle speech generation knowledge even if this process is the most fundamental prior. For example, l1 and l2-norm regularizations are equivalent to set Gaussian prior and Laplacian prior to model parameters respectively. This means that any speech signal specific knowledge is not used for regularization. Manifold-based regularization exploits the local linear structure of observed acoustic features, which are simply realization of the speech generation process. Therefore, to incorporate prior knowledge of speech generation into regularization, we propose a phonetic state relation graph based approach. This method was evaluated on the TIMIT phone recognition domain. The results showed that it reduced the phone error rate from 20.8% to 20.3% under the same conditions.
KSP Keywords
Cost Function, DNN-based acoustic model, Deep neural network(DNN), Graph regularized, L1 and L2-norm, Local linear, Model parameter, Phone Error Rate, Speech Signals, Speech generation, acoustic features
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.