17HR2300, Development of time-space based spectrum engineering technologies for the preemptive using of frequency,
Chong Young Jun
Abstract
Due to the availability of unexplored wideband spectra, millimeter-wave (mmWave) frequency bands have drawn a great attention for 5G. Due to severe free space path loss in mmWave frequency bands compared to low frequency bands, high-gain directional beamforming is considered a key enabling technology. When the TX and RX beams are not coaxial, i.e., the beams are mis-aligned, significant power losses will be incurred. Based on 28 and 38 GHz measurements collected in urban high-rise environments surrounded with complicated propagation obstacles, we observed that the mis-alignment power losses are not only a function of the antenna radiation pattern but also are affected by the surrounding environment. It is because of the reception of multipath signals from numerous directions. Considering that most standardized propagation characteristics are documented for omni-directional antenna receptions, this result will be helpful in estimating beamforming propagation characteristics more accurately. Generally, our results indicate that a small angle mis-alignment can cause a large power loss. This suggests that precise beamforming is required in mmWave beamforming communication systems.
KSP Keywords
38 GHz, Communication system, Enabling technologies, High-rise, Omnidirectional Antenna, Propagation characteristics, Small angle, Surrounding environment, antenna radiation pattern, free space path loss, frequency band
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.