Rail traffic is widely acknowledged as an efficient and green transportation pattern and its evolution attracts a lot of attention. However, the key point of the evolution is how to develop the railway services from traditional handling of the critical signaling applications only to high data rate applications, such as real-time videos for surveillance and entertainments. The promising method is trying to use millimeter wave which includes dozens of GHz bandwidths to bridge the high rate demand and frequency shortage. In this paper, the channel characteristics in an arched railway tunnel are investigated owing to their significance of designing reliable communication systems. Meantime, as millimeter wave suffers from higher propagation loss, directional antenna is widely accepted for designing the communication system. The specific changes that directional antenna brings to the radio channel are studied and compared to the performances of omnidirectional antenna. Note that the study is based on enhanced wide-band ray tracing tool where the electromagnetic and scattering parameters of the main materials of the tunnel are measured and fitted with predicting models.
KSP Keywords
Channel Characteristics, Communication system, Frequency shortage, Green transportation, High data rate, High rate, Key points, Main materials, Omnidirectional Antenna, Predicting model, Propagation loss
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.