17HH1400, Development of cloud-base smart bed system and FaaS technology for smart farm expansion,
Se Han Kim
Abstract
The crop productivity depends on environmental factors or product resources, such as temperature, humidity, labor and electrical costs. However, above all, crop disease is the crucial factor and causes 20-30% reduction of the productivity in case of its infection. Thus, the disease of the crop is the important factor affecting the productivity of the crops. Therefore, the farmer concentrates on the cause of the disease in the crops during its growth, but it is not easy to recognize the disease on the spot. Until now, they just relied on the opinion of the experts or their own experiences when the disease is doubtful. However, it triggers a decrease in productivity as no taking appropriate action and time. In this paper, to address this problem the mechanism, which dynamically analyses the images of the disease, is provided. The analysis result is immediately sent to the farmer required the decision and then feedback from the farmer is reflected to the model. The mechanism performs the diagnosing and predicting of the disease with data set of images using deep learning. Thus, it encourages increasing of the productivity through the fast recognition of disease and the consequent action.
KSP Keywords
Crop disease, Crop productivity, Data sets, Environmental factor(E-factor), Image-based, deep learning(DL), learning mechanism
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.