Given an image containing an object of interest, the object can be detected by comparing the feature points in the given image with those in a reference object image. In a case where the given image contains a large number of similar objects, the object of interest is difficult to be detected. It is because the feature points in the given image are concentrated in some regions where each region has a drastic change in the intensity of points. One of the methods to overcome the problem of the feature concentrating is to increase the limitation in the number of feature points to be used for the detection. However, this causes more computational load. Alternatively, the resolution of the image can be lowered, but this method decreases the accuracy of detection. In this paper, in order to detect the object of interest in an image with multiple similar objects, a sliding window for feature matching is used. The sliding window is optimized in size for better performance of the object detection. As a practical example, a service that visualizes the location of a desired book in a library is considered. The image for feature matching is obtained from high-resolution CCTVs which are connected to a cloud server that has databases of book title images. This service can be extended to visualize the location of the object to the users, using augmented reality (AR) technology on a mobile platform of a smart phone or smart glasses. The presented method for this service is experimentally evaluated.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.