Conference Paper
Combining Multi-scale Features using Sample-level Deep Convolutional Neural Networks for Weakly Supervised Sound Event Detection
Cited - time in
Share
Authors
Jongpil Lee, Jiyoung Park, Sangeun Kum, Youngho Jeong, Juhan Nam
Issue Date
2017-11
Citation
Detection and Classification of Acoustic Scenes and Events (DCASE) 2017: Workshop, pp.69-73
Language
English
Type
Conference Paper
Abstract
This paper describes our method submitted to large-scale weakly supervised sound event detection for smart cars in the DCASE Challenge 2017. It is based on two deep neural network methods suggested for music auto-tagging. One is training sample-level Deep Convolutional Neural Networks (DCNN) using raw waveforms as a feature extractor. The other is aggregating features on multiscaled models of the DCNNs and making final predictions from them. With this approach, we achieved the best results, 47.3% in F-score on subtask A (audio tagging) and 0.75 in error rate on subtask B (sound event detection) in the evaluation. These results show that the waveform-based models can be comparable to spectrogrambased models when compared to other DCASE Task 4 submissions. Finally, we visualize hierarchically learned filters from the challenge dataset in each layer of the waveform-based model to explain how they discriminate the events.
KSP Keywords
Convolution neural network(CNN), Deep convolutional neural networks, Deep neural network(DNN), F-score, Multi-scale, Network method, Sound event detection(SED), Training samples, Weakly supervised, audio tagging, error rate
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.