본 논문에서는 최신의 비디오 코덱 표준인 HEVC(High Efficiency Video Coding)의 화면 내 예측 부호화의 성능 향상을 위하여 SRCNN(Super Resolution Convolutional Neural Networks)을 이용하는 방법을 제안한다. SRCNN 은 비교적 최신 기술인 CNN(Convolutional Neural Network)을 사용하여 이미지를 추가적인 데이터 없이 보간 하여 해상도를 증가시키는 기술이다. HEVC 에서는 화면 내 예측의 잔차신호를 부호화 하기 위해 많은 비트를 소모하는데, 본 논문에서는 이 잔차신호들의 해상도를 낮추어 부호화 되는 비트를 줄이며, 복호화기에서 SRCNN 을 이용하여 원래의 해상도로 복원을 수행하여 압축성능을 향상 시키는 방법에 대하여 제안한다. 제안하는 기술은 HM 16.6 에 구현하였으며, CNN 트레이닝에 Caffe 라이브러리를 사용하였다.
KSP Keywords
Convolution neural network(CNN), Super resolution, high efficiency video coding
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.