For a high-power device of hybrid electrical vehicles requiring high thermal reliability, the concept of low temperature sintering material composed of Ag coated Cu, Sn/Ag/Cu ternary solder and chemical components removing oxide on the surface of metal fillers was studied under a processing temperature of 240oC. Due to the limited thermal reliability of conventional Tin based solder systems, the high-power device applications with a good thermal performance have been hindered because these solder materials were possibly re-melted under extreme operating conditions. Isotropic conductive paste based on thermosetting resin was previously investigated. With increase of temperature during processing, the Sn/Ag/Cu ternary solder in low temperature sintering material was melted at the melting temperature (220oC) of solder, and then, Sn was reacted with the adjacent Cu particles, producing intermetallic compound such as Cu6Sn5 or Cu3Sn. The metallic reaction between Tin and copper increased the melting temperature of the yielded metal filler from 220oC to 360oC. Therefore, we expect the enhanced reliability and thermal stability of low temperature sintering material, compared to the solder-based conventional conductive interconnection materials, because the created metal filler product (intermetallic compound) in low temperature sintering material after processing will not be re-melted at the similar operating temperature to the processing temperature, 240oC. After sintering processing of low temperature sintering material in present research, 3.7 wt.% of the residue chemicals was detected by TGA because most of chemical components was evaporated during sintering process. In conclusion, low temperature sintering material is believed to be a good candidate material for the high-power device packaging due to the phenomena of the increased melting temperature of metal filler.
KSP Keywords
Conductive paste, Cu particles, Device packaging, High power, High thermal reliability, Hybrid electrical vehicles, Interconnection materials, Intermetallic compound, Low temperature(LT), Melting temperature(Tm), Metal filler
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.