Human body communications (HBCs) realize wireless body area networks (WBANs) using the human body as a transmission channel without wired or wireless connections. While presenting various approaches for measurement and analysis of the human body channel, previous studies require additional interpretations of their results to obtain practical design parameters for a desired communication system. This paper addresses the provision of specific design guidelines based on the proposed channel measurement for capacitive coupling HBC employing digital transmission, adopted in the IEEE standards 802.15.6. for WBAN. In the experiments, customized channel-sounding signals were applied to the human body using a battery-powered device with a ground-electrode size of 27 × 50 mm2. The signals received after passage through the body were measured considering 30 kinds of measurement conditions determined by the body postures and locations of the transmitter and receiver. The operating frequencies of the transmission signals were varied up to 100 MHz. This work derives the minimum required lengths of symbol-codes based on analyses of channel-measured data in terms of measurement conditions, operating frequencies, and bandwidths of a receive-filter, to achieve a maximum data rate. This was done to ensure handling of intrinsic signal errors such as those by inter-symbol-interference, and to provide more reliable bit-error-rate performance in the human body channel, depending on the transmitter structures.
KSP Keywords
100 MHz, Bit Error rate, Body posture, Capacitive Coupling, Channel measurement, Communication system, Electric signal, Electrode size, IEEE Standards, Inter symbol interference(ISI), Maximum data rate
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.