Journal Article
High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers
Side channel effects such as temporal disparity and intensity fluctuation of the photon pulses caused by random bit generation with multiple laser diodes in high-speed polarization-based BB84 quantum key distribution (QKD) systems can be eliminated by increasing the DC bias current condition. However, background photons caused by the spontaneous emission process under high DC bias current degrade the performance of QKD systems. In this study, we investigated the effects of spontaneously emitted photons on the system performance in a high-speed QKD system at a clock rate of 400 MHz. Also, we show further improvements in the system performance without side channel effects by utilizing the temporal filtering technique with real-time fieldprogrammable gate array signal processing.
KSP Keywords
Array Signal Processing, Current condition, DC bias current, Distribution System, Field-Programmable Gate Array(FPGA), Filtering technique, High Speed, High performance, Intensity fluctuation, Laser diode, Quantum Key Distribution
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.