17HB2500, Intelligence Many-Core Processor and SW based on Low-Power Hypervisor,
Kwon Young-Su
Abstract
This paper proposes an efficient architecture of HEVC in-loop filters (ILFs) with the target of providing effective multicore utilization for ultra-high definition video applications. While HEVC allows for a high level of parallelization, the issue of data dependencies at the ILF leads to inefficient parallel processing performance. The novel memory organization and management techniques address the data dependence-related issues between multiple processing units and enable to filter the flexible area on multicore decoder. In addition, we introduce the adaptive deblocking filtering order (ADFO) to minimize the impact of bus congestion when multiple cores interoperate for processing very large data. Furthermore, we design the deblocking filter with skip mode pipelining to achieve the high performance minimizing the increased cost and the power consumption. For SAO, we apply the window-based parallel SAO filtering scheme. The resource sharing is considered throughout the entire architecture. Based on both experimental and analytical results, our proposed design can achieve more than 1.31 Gpixels/s and less than 2.6 Gpixels/s at maximum frequency 660 MHz in single core, and consumes 56.2 Kgates including 10.6 Kgates for memory management architecture, which supports multicore decoder, and about 20.8 mW power on average when synthesizing with the 28 nm CMOS library. Moreover, the skip modes of DF improve both the performance and the power dissipation. The ADFO improves the performance of ~9.17% when decoding 8 K sequence on octacore at 400 MHz frequency. TpG (Throughput per Gate) is the highest among the related works.
KSP Keywords
28 nm CMOS, Data Dependencies, Data dependence, High performance, In-Loop, Management techniques, Maximum Frequency, Memory management, Multicore Utilization, Organization and Management, Parallel Processing
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.