17HH1900, Cloud based Security Intelligence Technology Development for the Customized Security Service Provisioning,
Kim Jonghyun
Abstract
본 논문에서는 정상과 이상 트래픽이 불균형으로 발생하는 상황에서 기계 학습 기반의 효과인 침입 탐지 시 스템에 한 연구 결과를 소개한다. 훈련 데이터의 패턴을 학습하여 정상/이상 패킷을 탐지하는 기계 학습 기반의 IDS에서는 훈련 데이터의 클래스 불균형 정도에 따라 탐지 성능이 히 차이가 날 수 있으나, IDS 개발 시 이러 한 문제에 한 고려는 부족한 실정이다. 클래스 불균형 데이터가 발생하는 환경에서도 우수한 탐지 성능을 제공하 는 기계 학습 알고리즘을 선정하기 하여, 본 논문에서는 Kyoto 2006+ 데이터셋을 이용하여 정상 침입 클래 스 비율이 서로 다른 클래스 불균형 훈련 데이터를 구축하고 다양한 기계 학습 알고리즘의 인식 성능을 분석하다. 실험 결과, 부분의 지도 학습 알고리즘이 좋은 성능을 보인 가운데, Random Forest 알고리즘이 다양한 실험 환경에서 최고의 성능을 보다.
KSP Keywords
Random forest
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.