In this paper, we propose a model-based bandwidth prediction scheme for variable-bit-rate (VBR) video traffic with regular group of pictures (GOP) pattern. Multiplicative ARIMA process called GOP ARIMA (ARIMA for GOP) is used as a base stochastic model, which consists of two key ingredients: prediction and model validity check. For traffic prediction, we deploy a Kalman filter over GOP ARIMA model, and confidence interval analysis for validity determination. The GOP ARIMA model explicitly models inter and intra-GOP frame size correlations and the Kalman filter-based prediction maintains "state" across the prediction rounds. Synergy of the two successfully addresses a number of challenging issues, such as a unified framework for frame type dependent prediction, accurate prediction, and robustness against noise. With few exceptions, a single video session consists of several scenes whose bandwidth process may exhibit different stochastic nature, which hinders recursive adjustment of parameters in Kalman filter, because its stochastic model structure is fixed at its deployment. To effectively address this issue, the proposed prediction scheme harbors a statistical hypothesis test in the prediction framework. By formulating the confidence interval of a prediction in terms of Kalman filter components, it not only predicts the frame size but also determines validity of the stochastic model. Based upon the results of the model validity check, the proposed prediction scheme updates the structures of the underlying GOP ARIMA model. We perform a comprehensive performance study using publicly available MPEG-2 and MPEG-4 traces. We compare the prediction accuracy of four different prediction schemes. In all traces, the proposed model yields superior prediction accuracy than the other prediction schemes. We show that confidence interval analysis effectively detects the structural changes in the sample sequence and that properly updating the model results in more accurate prediction. However, model update requires a certain length of observation period, e.g., 60 frames (2 s). Due to this learning overhead, the advantage of model update becomes less significant when scene length is short. Through queueing simulation, we examine the effect of prediction accuracy over user perceivable QoS. The proposed bandwidth prediction scheme allocates less 50% of the queue(buffer) compared to the other bandwidth prediction schemes, but still yields better packet loss behavior.
KSP Keywords
ARIMA model, Accurate prediction, Bandwidth prediction, Challenging issues, Comprehensive performance, Confidence interval analysis, Filter-based, Frame size, Group of picture(GOP), ITS Deployment, MPEG-2
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.