In this paper, we propose a model-based bandwidth prediction scheme for variable-bit-rate (VBR) video traffic with regular group of pictures (GOP) pattern. Multiplicative ARIMA process called GOP ARIMA (ARIMA for GOP) is used as a base stochastic model, which consists of two key ingredients: prediction and model validity check. For traffic prediction, we deploy a Kalman filter over GOP ARIMA model, and confidence interval analysis for validity determination. The GOP ARIMA model explicitly models inter and intra-GOP frame size correlations and the Kalman filter-based prediction maintains "state" across the prediction rounds. Synergy of the two successfully addresses a number of challenging issues, such as a unified framework for frame type dependent prediction, accurate prediction, and robustness against noise. With few exceptions, a single video session consists of several scenes whose bandwidth process may exhibit different stochastic nature, which hinders recursive adjustment of parameters in Kalman filter, because its stochastic model structure is fixed at its deployment. To effectively address this issue, the proposed prediction scheme harbors a statistical hypothesis test in the prediction framework. By formulating the confidence interval of a prediction in terms of Kalman filter components, it not only predicts the frame size but also determines validity of the stochastic model. Based upon the results of the model validity check, the proposed prediction scheme updates the structures of the underlying GOP ARIMA model. We perform a comprehensive performance study using publicly available MPEG-2 and MPEG-4 traces. We compare the prediction accuracy of four different prediction schemes. In all traces, the proposed model yields superior prediction accuracy than the other prediction schemes. We show that confidence interval analysis effectively detects the structural changes in the sample sequence and that properly updating the model results in more accurate prediction. However, model update requires a certain length of observation period, e.g., 60 frames (2 s). Due to this learning overhead, the advantage of model update becomes less significant when scene length is short. Through queueing simulation, we examine the effect of prediction accuracy over user perceivable QoS. The proposed bandwidth prediction scheme allocates less 50% of the queue(buffer) compared to the other bandwidth prediction schemes, but still yields better packet loss behavior.
KSP 제안 키워드
ARIMA model, Accurate prediction, Bandwidth prediction, Challenging issues, Comprehensive performance, Confidence interval analysis, Filter-based, Frame size, ITS Deployment, MPEG-2, Model structure
저작권정책 안내문
한국전자동신연구원 지식공유플랫폼 저작권정책
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.