Deep learning is one of the major promising machine learning methodologies. Deep learning is widely used in various application domains, e.g., image recognition, voice recognition, and natural language processing. In order to improve learning accuracy, deep neural networks have evolved by: 1) increasing the number of layers and 2) increasing the number of parameters in massive models. This implies that distributed deep learning platforms need to evolve to: 1) deal with huge/complex deep neural networks and 2) process with high-performance computing resources for massive training data. This paper proposes a new virtual shared memory framework, called Soft Memory Box (SMB), which enables sharing the memory of remote node among distributed processes in the nodes so as to improve communication performance via parameter sharing. According to data-intensive performance evaluation results, the communication time of deep learning using the proposed SMB is 2.1 times faster than that using the massage passing interface (MPI). In addition, the communication time of the SMB-based asynchronous parameter update becomes 2-7 times faster than that using the MPI depending on deep learning models and the number of deep learning workers.
KSP Keywords
Communication performance, Communication time, Computing resources, Deep neural network(DNN), Distributed processes, High-performance computing(HPC), Image recognition, Massage passing interface, Massive models, Natural Language Processing(NLP), Number of layers
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.