ETRI-Knowledge Sharing Plaform



논문 검색
구분 SCI
연도 ~ 키워드


학술지 Spatial Region Estimation for Autonomous CoT Clustering Using Hidden Markov Model
Cited 1 time in scopus Download 181 time Share share facebook twitter linkedin kakaostory
정준영, 민옥기
ETRI Journal, v.40 no.1, pp.122-132
한국전자통신연구원 (ETRI)
16MS4600, (ICBMS-1세부) CoT(Cloud of Things) 환경에서 실시간 반응성 향상을 위한 계층적 데이터 스트림 분석 SW 기술 개발, 민옥기
This paper proposes a hierarchical dual filtering (HDF) algorithm to estimate the spatial region between a Cloud of Things (CoT) gateway and an Internet of Things (IoT) device. The accuracy of the spatial region estimation is important for autonomous CoT clustering. We conduct spatial region estimation using a hidden Markov model (HMM) with a raw Bluetooth received signal strength indicator (RSSI). However, the accuracy of the region estimation using the validation data is only 53.8%. To increase the accuracy of the spatial region estimation, the HDF algorithm removes the high-frequency signals hierarchically, and alters the parameters according to whether the IoT device moves. The accuracy of spatial region estimation using a raw RSSI, Kalman filter, and HDF are compared to evaluate the effectiveness of the HDF algorithm. The success rate and root mean square error (RMSE) of all regions are 0.538, 0.622, and 0.75, and 0.997, 0.812, and 0.5 when raw RSSI, a Kalman filter, and HDF are used, respectively. The HDF algorithm attains the best results in terms of the success rate and RMSE of spatial region estimation using HMM.
KSP 제안 키워드
Cloud of Things, High Frequency(HF), Internet of thing(IoT), IoT Devices, Radio signal strength(RSS), Received signal strength indication(RSSI), Region estimation, Root mean square(RMS), Success rate, Validation data, hidden Markov Model
본 저작물은 공공누리 제4유형 : 출처표시 + 상업적 이용금지 + 변경금지 조건에 따라 이용할 수 있습니다.