본 논문에서는 딥러닝의 객체 검출 알고리즘인 Faster R-CNN을 기반한 차종 분류 방법을 제안한다. Faster R-CNN 방법은검출과 분류를 동시에 수행한다. 하지만 데이터의 양과 하드웨어의 제약으로 검출과 분류를 동시에 수행하는데 어려움이있다. 본 연구에서는 Faster R-CNN 알고리즘을 차량 검출 네트워크로 사용하고 추가 네트워크를 구성하여 출검된 영역에 대해분류를 수행한다. 기존의 Faster R-CNN은 검출과 분류를 동시에 수행하지만, 제안 방법은 검출과 분류를 나누어 수행한다. 제안한 방법 검증을 위해 획득된 8종의 차량 영상 총 15,400장을 training 데이터로 사용하였으며, 3,800장을 Validation 데이터로 사용하였다. 실험 결과, Faster R-CNN을 사용한 차량 검출 성능은 mAP 87.4%, 차종 분류율은 85.4%였고, 제안한방법의 평균 차종 분류율은 89.5%의 결과를 보였다. 또한, 제안한 방법으로 분류를 수행하였을 때, 차종별 분류 성능의편차를 줄일 수 있었다.
KSP Keywords
Faster r-cnn
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.