17PB4100, Eco-friendly Interconnection Paste and Process with Laser Bonding for Flexible LED Module,
Eom Yong Sung
Abstract
To enhance the mechanical, thermal, and electrical properties and economic profits, polycarbonates (PCs) have been blended with various inorganic additives for the past few decades. Herein, we fabricated basalt fiber (BF)-infiltrated PC composites as a promising candidate for a myriad of PC applications. Mechanical robustness and rheology were examined via the precise control of BF contents (up to 12.5 phr). The incorporation of BF gradually enhanced the mechanical properties of the composites such as moduli and strengths, as determined by flexural and tensile tests. The Izod impact strength was reduced as a function of BF concentration, representing the ductile-to-brittle transition. The heat deflection temperature of the PC/BF composites was increased from 131.2 °C to 138.9 °C, which was in good agreement with the thermomechanical results. By contrast, the glass transition temperature measured by differential scanning calorimetry remained unchanged at ca. 143 °C. The incorporation of BF in PCs enhanced the dimensional stability. The visual observation for PC/BF composites was examined via scanning electron microscopy. The rheological investigation was systematically performed by utilizing the melt flow index, and capillary and torsional rheometry with a variety of experimental conditions. These PC/BF hybrid composites with tunable mechanical and rheological properties will be employed for various applications by tailoring the PC/BF ratios.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.