All metal oxide heterostructured multielectrode arrays consisting of indium-tin oxide nanowires (ITO NWs) and an iridium oxide (IrOx) layer were fabricated. The needle-type ITO NWs were grown on an ITO electrode using a radio frequency magnetron sputtering technique followed by electrodeposition of an IrOx layer. The major advantage of this fabrication technique is in its simplicity because it does not require templates and seed layers to grow the ITO NWs. A transmission electron microscope found the IrOx to be uniformly electrodeposited over the surface of the ITO NW. After the electrodeposition process, the charge storage capacitance (CSC) of the ITO NW electrode increased from 0.09 to 4.25 mC cm?닋2, and the IrOx/ITO NW electrode exhibited a charge injection limit of 1.9 mC cm?닋2 and CSC utilization efficiency of approximately 45%. The stimulation performance of the IrOx/ITO NW electrode was confirmed using rat hippocampal slices, which exhibited a higher negative peak amplitude in the field excitatory postsynaptic potential when stimulated by a single pulse, and more effectively induced long-term potentiation via a theta burst stimulation compared with an ITO NW electrode. These results indicate that the synergetic combination of ITO NWs and a very thin IrOx layer enhanced the performance of the stimulus.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.