This paper proposes a novel method for horizon detection that combines a multi-scale approach and a convolutional neural network (CNN). The ability to detect the horizon is the first step toward situational awareness of autonomous ships, which have recently attracted interest, and greatly affects the performance of subsequent steps and that of the overall system. Since typical approaches for horizon detection mainly use edge information, two challenging issues need to be overcome: non-stability of edge detection and complex maritime scenes. The proposed method first detects line features by combining edge information from the various scales to reduce the computational time while mitigating the non-stability of edge detection. Subsequently, CNN is used to verify the edge pixels belonging to the horizon to process complex maritime scenes that contain line features similar to the horizon and changes in the sea status. Finally, linear curve fitting along with median filtering are iteratively used to estimate the horizon line accurately. We compared the performance of the proposed method with state-of-the-art methods using the largest database publicly available. The experimental results showed that the accuracy with which the proposed method can identify the horizon is superior to that of state-of-the-art methods. Our method has a median positional error of less than 1.7 pixels from the center of the horizon and a median angular error of approximately 0.1?닔. Further, our results showed that our method is the only one capable of detecting the horizon at high speed with high accuracy, which is attractive for practical applications.
KSP Keywords
Challenging issues, Computational time, Convolution neural network(CNN), Curve Fitting, Edge Detection, Edge information, High Speed, High accuracy, Line feature, Median Filtering, Multi-scale approach
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.