In this work, we present a highly-sensitive refractive index sensor based on metatronic nanocircuits operating at near-infrared spectral range. The structure is designed based on simple nanorod geometry and fabricated by nanopatterning of transparent conducting oxides. The functionality of these polarization dependent metatronic nanocircuits is enhanced by applying tunable response. This feature is investigated by depositing NH2 (Amine) groups via plasma polymerization technique on top of indium-tin-oxide nanorods. The dielectric constant of Amine groups is a function of their thickness, which can be controlled by the RF power and the혻time duration of the applied plasma polymerization process. The resonance wavelengths of nanocircuits shift to higher wavelength, as the dielectric constant of the deposited material increases. An excellent agreement between the design and experimental results are obtained. Our metatronic based nanosensor offers a high-sensitive performance of 1587 nm/RIU with a satisfactory figure of merit for this class of sensors.
KSP Keywords
Amine group, Dielectric Constant, Figure of Merit(FoM), High sensitive, Indium Tin Oxide(ITO), Near-infrared, Polymerization process, RF Power, Refractive index sensing, Sensor based, Spectral range
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.