ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 Fast Horizon Detection in Maritime Images using Region-of-interest
Cited 23 time in scopus Download 10 time Share share facebook twitter linkedin kakaostory
저자
정치윤, 양현승, 문경덕
발행일
201807
출처
International Journal of Distributed Sensor Networks, v.14 no.7, pp.1-11
ISSN
1550-1477
출판사
SAGE
DOI
https://dx.doi.org/10.1177/1550147718790753
협약과제
18PS1200, 자율운항 선박을 위한 운항관제 인공지능 시스템 원천기술 개발, 문경덕
초록
In this article, we propose a fast method for detecting the horizon line in maritime scenarios by combining a multi-scale approach and region-of-interest detection. Recently, several methods that adopt a multi-scale approach have been proposed, because edge detection at a single is insufficient to detect all edges of various sizes. However, these methods suffer from high processing times, requiring tens of seconds to complete horizon detection. Moreover, the resolution of images captured from cameras mounted on vessels is increasing, which reduces processing speed. Using the region-of-interest is an efficient way of reducing the amount of processing information required. Thus, we explore a way to efficiently use the region-of-interest for horizon detection. The proposed method first detects the region-of-interest using a property of maritime scenes and then multi-scale edge detection is performed for edge extraction at each scale. The results are then combined to produce a single edge map. Then, Hough transform and a least-square method are sequentially used to estimate the horizon line accurately. We compared the performance of the proposed method with state-of-the-art methods using two publicly available databases, namely, Singapore Marine Dataset and buoy dataset. Experimental results show that the proposed method for region-of-interest detection reduces the processing time of horizon detection, and the accuracy with which the proposed method can identify the horizon is superior to that of state-of-the-art methods.
KSP 제안 키워드
Edge Detection, Edge Extraction, Edge map, Fast method, Least Squares(LS), Least-square method, Multi-scale approach, Processing information, Processing speed, Region Of Interest(ROI), horizon detection