To manage voluminous viewed videos, which US adults watch at a rate of more than five hours per day on average, an automatic method of detecting highly attended video segments during video viewing is required to access them for fine-grained sharing and rewatching. Most electroencephalography (EEG)-based studies of user state analysis have addressed the recognition of attention-related states in a specific task condition, such as drowsiness during driving, attention during learning, and mental fatigue during task execution. In contrast to attention in a specific task condition, both inattention and normal attention are meaningless to viewers in terms of managing viewed videos, while detecting high attention paid to video segments would make a valuable contribution to an automatic management system of viewed videos based on viewer attention. To the best of our knowledge, this is the first EEG-based study of detecting viewer attention paid to video segments. This study describes how to collect video-induced EEG and attention data for video segments from viewers without bias to specific genres and how to construct a subject-independent detection model for the top 20% of viewer attention. The attention detection model using the proposed interval EEG features from 14 channels achieved the best average F1 score of 39.79% with an average accuracy of 52.96%. Additionally, this paper proposes a channel-based feature selection method that considers both the performances of single-channel models and their physical locations for investigating the group of channels relevant to attention detection. The attention detection models using the interval EEG features from all four or some of the channels located in the fronto-central, parietal, temporal, and occipital lobes of the left hemisphere achieved the best F1 score of 39.60% with an average accuracy of 48.70%. It is shown that these models achieve better performance than models using the features from all four or some of their symmetric channels in the right hemisphere and models using the features from six channels located in the anterior-frontal and frontal lobes of the left and right hemispheres. This paper shows the feasibility of subject-independent and genre-independent attention detection models using a wireless EEG headset with optimized channels; these models can be applied to an intelligent video management system based on viewer attention in real-world scenarios.
KSP 제안 키워드
Attention detection, Automatic method, Detection model, EEG features, EEG headset, Feature selection(FS), Left Hemisphere, Management system, Real-world, Right Hemisphere, Single Channel
저작권정책 안내문
한국전자동신연구원 지식공유플랫폼 저작권정책
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.