Temperature effect inversion (TEI) phenomenon in ultralow power (ULP) very large scale integration circuits has been identified as an important effect by both academia and industry. Although a number of ULP methods that attempt to exploit the TEI phenomenon have been proposed, the small size of the design exploration space when applying these methods to ULP circuits hinders them from achieving their full potential. This is mainly due to the limited granularity of the supply voltage level control. Starting with an intuition that the body biasing (BB) technique is a key to overcome this limitation, this paper exploits the BB technique along with the TEI-aware voltage scaling (TEI-VS) method and TEI-aware frequency scaling (TEI-FS) method, so as to substantially increase the design spaces of these methods. Techniques for optimally combining the BB technique with TEI-VS and TEI-FS are introduced. Simulation results with the latest commercial CMOS process technologies for ULP designs demonstrate the effectiveness of the proposed methodology.
KSP Keywords
CMOS Process, Design Exploration, Design space, Frequency Scaling, Level Control, Supply voltage, Temperature effect inversion(TEI), Ultra-low power(ULP), Voltage Scaling, Voltage level, body biasing
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.