A frequency reconfigurable dipole antenna based on a silicon radiator is presented. The silicon radiator is activated with the aid of highly dense solid-state plasma by injecting carriers into the intrinsic region of p-i-n diodes. The fabrication and design guideline of the reconfigurable dipole antenna with this plasma radiator are described. When the plasma radiator is activated or deactivated, the length of the dipole arm changes, which means that the operating frequency of the dipole antenna is reconfigurable. When all the channels in the plasma radiator are activated, the operating frequency is tuned from 6.3 GHz to 4.9 GHz. The measured tunable bandwidth of our fabricated dipole antenna is approximately 31%, which is a practical value in comparison to conventional frequency reconfigurable antennas whose tunable bandwidth is in a range from 20% to 50%. To further support the validity of our results, we provide the well-matched simulation results from an antenna simulation. These results demonstrate that silicon with its commercial technology, which has not attracted attention in comparison to a metal antennas, is a promising tunable material for a frequency reconfigurable antenna. This plasma-based reconfigurable antenna has great potential for use in the dynamic communication environment.
KSP Keywords
Antenna Simulation, Communication Environment, Frequency reconfigurable dipole antenna, Operating frequency, PIN Diode, Solid-state plasma, Tunable bandwidth, design guidelines, frequency reconfigurable antenna, simulation results
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.