Polarizers have been intensively investigated theoretically and experimentally, with innovative device designs and emerging optical materials. However, the polarization state and extinction ratio in a waveguide polarizer are not changeable, owing to the passive device operation principles. In this study, a polarization-switchable graphene waveguide polarizer based on the polarization-dependent light absorption of graphene film of different thicknesses and micro-opto-mechanical systems (MOMS) technology is demonstrated. A superstrate on which graphene layers of different thicknesses are integrated is positioned on the optical waveguide core, and is mechanically pushed to suppress the unwanted polarization state. Graphene thickness on the superstrate plays a key role in switching the device's polarization state: A few-layer graphene film on the superstrate attenuates the transverse-electric (TE) mode, making the device transverse-magnetic (TM) passing, while a many-layer graphene diminishes the TM mode, making the device TE passing. The dynamic optical attenuation function is automatically configured via accurate and discrete mechanical adjustment of the air gap between the superstrate and the waveguide core. The theoretical simulation and the experimental result exhibit good agreement. This work introduces an idea for tuning the polarization state in a polarization diverse coherent optical system and may contribute to a wide range of applications in MOMS systems.
KSP Keywords
Air-gap, Different thicknesses, Experimental Result, Few-layer Graphene, Graphene layers, Graphene thickness, Key role, Light absorption, Optical waveguides, Opto-Mechanical, Polarization control
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.