In this study, a high-performance AlGaN/GaN high electron mobility transistor (HEMT) is presented to improve its electrical operation by employing an inner field-plate (IFP) structure. Prior to the IFP structure analysis, we compared the measured and simulated direct current characteristics of the fabricated two-finger conventional T-shaped gate HEMTs. Then, the AlGaN/GaN HEMT with a drain-side field plate (FP) structure was suggested to enhance the breakdown voltage characteristics. The maximum breakdown voltage recorded with a 0.8 μm stretched FP structure was 669 V. Finally, the IFP structure was interfaced with the gate head of the device to compensate the radio frequency characteristics, choosing the optimum length of the drain-side FP structure. Compared to the 0.8 μm stretched FP structure, the IFP structure showed improved frequency characteristics with minimal difference to the breakdown voltage. The frequency variation caused by changing the passivation thickness was also analyzed, and the optimum thickness was identified. Thus, IFP AlGaN/GaN HEMT is a promising candidate for high-power and high-frequency applications.
KSP Keywords
AlGaN/GaN HEMTs, Breakdown voltage(BDV), Direct current(DC), Direct current characteristics, Field Plate, High Frequency(HF), High electron mobility transistor(HEMT), High performance, High power, High-frequency applications, Optimum length
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.