Object detection is a research field that deals with detecting objects of a certain class in digital images and videos. Traditional methods of object detection were based on pre-structured features and had limitation on accuracy and computational efficiency. As deep learning had been proved to be a breakthrough, researches about object detection method based on deep learning, especially CNN, started. CNN-based object detection methods can be divided into two types. One is two-stage detector that once region proposals are generated, then they are classified. The other is one-stage detector that detects and classifies the object without generating region proposals. In two-stage detector case, combining CNN models is one of the ways to improve the accuracy in detection, which is called ensemble. In ensemble method, the region proposals generated from each CNN models are combined, classified, and finally voted. When selecting CNN models to be used in ensemble method, various properties of them should be considered in order to enhance complementary strength. In this paper, we propose advanced ensemble method in object detection with novel methods of model selecting and box voting. It is proved with experiment that the accuracy in object detection increased with our proposed methods. Also, combining the original method and our proposed method is expected to further increase the accuracy in detection and make ensemble model more robust.
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.