Conference Paper
Development of Automated 3D Knee Bone Segmentation with Inhomogeneity Correction for Deformable Approach in Magnetic Resonance Imaging
Cited 5 time in
Share
Authors
Dongyoun Kim, Jiyoung Lee, Joon Shik Yoon, Kwang Jae Lee, Kwanghee Won
Issue Date
2018-10
Citation
Research in Adaptive and Convergent Systems (RACS) 2018, pp.285-290
Osteoarthritis(OA) analysis is one of essential task in health issues. 3D Magnetic Resonance Imaging (MRI) segmentation plays an important role in a highly accurate knee osteoarthritis diagnosis. 3D segmentation knee MRI is challenging task because of complex knee structure, low contrast, noise, and bias field inherent in MRI. Deformable model is one of the most intensively model-based approaches for computer-aided medical image analysis. However, most of deformable models require prior shape and training processing for segmentation [1]. In this paper, we propose a deformable model-based approach with automatic initial point selection to segment knee bones from 3D MRI containing intensity inhomogeneity. This approach does not require manual initial point selection and training phase so that large amount of human resource and time can be saved. Preprocessing performs inhomogeneity correction and extracts voxels of interest in order to prevent leakage the boundary of target objective. The proposed deformable approach is devised by modifying boundary information of a hybrid deformable model [2] to morphological operation. Automated selection of initial point is motivated by 3D multi-edge overlapping technique in the [3] method. Experimental results are demonstrated 3D model comparing with other recent methods of knee bone segmentation [27,28] and 2D slices on both synthetic image with inhomogeneity correction or not. Our approach compared against a hand-segmented ground truth from experts. we achieved an average dice similarity coefficient of 0.951, sensitivity of 0.927, specificity of 0.999, average symmetric surface distance of 1.16 mm, and root mean square symmetric surface of 2.01mm. The result shows that our proposed approach is useful performing simple and accurate bone segmentation for diagnosis.
KSP Keywords
2D slices, 3D MRI, 3D Magnetic resonance imaging, 3D Segmentation, 3d model, Bone segmentation, Dice Similarity Coefficient, Highly accurate, Human resources, Initial point, Intensity Inhomogeneity
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.