For stable and successful use of grid-connected PV (photovoltaic) plants, it is quite necessary to know the expected power from PV plants in advance. However, forecasting PV output power accurately is difficult in practical cases where uncertainties are unavoidable. In this paper, we propose a confidence-aware forecasting system that produces a point forecast together with its confidence information. Our system classifies forecast outputs into confident forecasts and non-confident forecasts using the confidence information. Then, the confident forecast is used directly and the non-confident forecast is replaced by its lower bound, which is desirable for conservative scheduling of existing power plants. Through the experiments, we show that MAPE (maximum absolute percentage error) of the confident forecasts and the non-confident forecasts are 9.8% and 21.5%, respectively. We also show that the lower bound is lower than actual value in over 95% of the non-confident forecasts. The results show that our approach is good to classify forecasts into confident forecasts and non-confident forecasts and to produce effective lower bounds.
KSP Keywords
Confidence-Aware, Grid-connected PV, Learning-based, Lower bound, Output power, PV Output, PV plants, Point forecast, deep learning(DL), power plant, solar irradiance forecasting
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.