Nowadays, rail traffic is expected to evolve into a new era of 쨩smart rail mobility쨩, where trains, infrastructure, travelers and goods will be increasingly interconnected. Railway communications are required to support various high-data-rate applications, the communication system should be carefully designed, which makes railway scenario becomes an important communication scenario in the 5G era. Millimeter-wave (mmWave) bands and novel technologies like resource allocation, multiple access and multiple-output beam-forming are proposed in the realization of this goal. In this paper, the mmWave channel characteristics of rural railway scenario are studied via a calibrated ray-tracing simulator. The large-scale parameters of the channel characteristics, including the path loss, root-mean-square (RMS) delay spread, Rician K-factor, angular spreads, and cross-polarization ration (XPR) are explored. The statistical properties, decorrelation distance and cross-correlations are analyzed. The studied channel characteristics can be practically used to support the link level and system level design of the communication system in the similar environments.
KSP Keywords
28 GHz, Angular spread, Channel Characteristics, Communication system, Cross polarization(CP), Cross-Correlation, Decorrelation distance, Delay spread, High data rate, MmWave channel, Novel technologies
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.