Human poses are difficult to estimate due to the complicated body structure and the self-occlusion problem. In this paper, we introduce a marker-less system for human pose estimation by detecting and tracking key body parts, namely the head, hands, and feet. Given color and depth images captured by multiple red, green, blue, and depth (RGB-D) cameras, our system constructs a graph model with segmented regions from each camera and detects the key body parts as a set of extreme points based on accumulative geodesic distances in the graph. During the search process, local detection using a supervised learning model is utilized to match local body features. A final set of extreme points is selected with a voting scheme and tracked with physical constraints from the unified data received from the multiple cameras. During the tracking process, a Kalman filter-based method is introduced to reduce positional noises and to recover from a failure of tracking extremes. Our system shows an average of 87% accuracy against the commercial system, which outperforms the previous multi-Kinects system, and can be applied to recognize a human action or to synthesize a motion sequence from a few key poses using a small set of extremes as input data.
KSP Keywords
Body features, Body parts, Body structure, Depth image, Extreme points, Filter-based method, Geodesic distances, Human Pose estimation, Human action, Kalman filter, Local detection
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.