International Conference on Control, Automation and Systems (ICCAS) 2018, pp.661-665
Publisher
IEEE
Language
English
Type
Conference Paper
Abstract
Unsupervised visual anomaly detection is currently one of the most challenging machine learning problems. Various techniques have been specifically developed for certain limited domains while some are more generic towards a broader scope of applications. This paper aims to investigate a novel solution for general anomaly detection in surveillance videos by modeling patterns and objects that appear normally in the videos and then using this model to detect the anomalous objects by exploiting image reconstruction methodologies. This approach is inspired by the recent progression in development of robust semantic in-painting techniques. For our experiments, Context Encoders are used for the said purpose. Context encoders are proven successful to reconstruct missing holes in images based on the non-hole parts. Our proposed methodology is semi-supervised which means it does not require an annotated dataset however the videos of cases containing normal scenes are required separately to train the system. Various experiments suggest that the proposed methodology can successfully locate potentially anomalous images from the normal ones. This paper discusses in depth the possibilities of adopting such systems for general anomaly detection, pros, cons as well as the limitations of the overall methodology.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.