본 논문에서는 최근 활발히 연구되고 있는 딥 러닝 기반의 이미지와 비디오 압축 기술에 대해 살펴본다. 딥 러닝 기반의 이미지 압축 기술은 심층 신경망에 압축 대상 이미지를 입력하고 반복적 또는 일괄적 방식으로 은닉 벡터를 추출하여 부호화한다. 이미지 압축 효율을 높이기 위해 심층 신경망은 복원 이미지의 화질은 높이면서 부호화된 은닉 벡터가 보다 적은 비트로 표현될 수 있도록 학습된다. 이러한 기술들은 특히 저 비트율에서 기존의 이미지 압축 기술에 비해 뛰어난 화질의 이미지를 생성할 수 있다. 한편, 딥 러닝 기반의 비디오 압축 기술은 압축 대상 비디오를 직접 입력하여 처리하기 보다는 기존 비디오 코덱의 압축 툴 성능을 개선하는 접근법을 취하고 있다. 본 논문에서 소개하는 심층 신경망 기술들은 최신 비디오 코덱의 인루프 필터를 대체하거나 추가적인 후처리 필터로 사용되어 복원 영상의 화질 개선을 통해 압축 효율을 향상시킨다. 마찬가지로, 화면 내 예측 및 부호화에 적용된 심층 신경망 기술들은 기존 화면 내 예측 툴과 함께 사용되어 예측 정확도를 높이거나 새로운 화면 내 부호화 과정을 추가함으로써 압축 효율을 향상 시킨다.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.