In addition to ultrahigh capacity and speed in data management, future communication networks require enhanced performance via system reconfigurability under limited resources. Extremely high-speed operation renders optical data managing devices as excellent candidates to hybridize with current electronic devices; however, they still need tunability for system reconfiguration in an integrated scheme. We demonstrate an efficient electro-optic (EO) modulator that is mechanically tunable on a multiple optical waveguide system that functioned with a soft capacitor structure incorporating graphene and poly(methyl methacrylate) (PMMA). The flexible capacitor that generates optical signals by temporal light absorption depending on electrical signals can be mechanically detached and reattached from and onto a rigid surface of the waveguide. It provides either the on or off state of the modulating operation, and enables switching of the working waveguides, following the reconfigured data routes. Quality-controlled graphene mainly provides the EO operation, and PMMA plays an important role as both the flexible dielectric layer in the capacitor and the passivation layer for graphene protection. The modulation effects of the manually prepared graphene-PMMA capacitor mechanically adjusted onto a side-polished optical fiber (D-shaped fiber) are investigated in terms of the extinction ratio (ER) of the transmitting light and the operational bandwidth. We successfully display an ER of the modulator up to 19.8 dB with a voltage control ranging from -50 to 50 V. Its stable operation is verified with a modulation speed up to 2.5 MHz.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.