Conference Paper
An Approach on a Combination of Higher-order Statistics and Higher-order Differential Energy Operator for Detecting Pathological Voice with Machine Learning
18ZS1100, Core Technology Research for Self-Improving Artificial Intelligence System,
Lee Yunkeun
Abstract
Voice signal is an indicator finding a progression of diseases such as nerve disorder and muscle dysfunction. To improve the performance of medical diagnosis system using the voice signal, this paper suggests a new feature extraction method which combines higher-order statistics (HOS) and higher-order differential energy operator (DEO). For the experiment, Saarbruecken Voice Database (SVD) was used, and 687 healthy voice samples and 263 pathological voice samples which consist of Cysts, Paralysis, and Polyp were selected. In addition, the OpenSmile script which provides 6,373 features was used for comparison with our new features. To decide the most effective features, Gradient Boosting was conducted as a feature selector. Finally, 20 features including 15 combinations of HOS and DEO were chosen, and deep neural network(DNN) was trained using the new features. The best accuracy of 87.4% was obtained, which exceeds the best accuracy of 84.5% with the existing features. The finding suggests a possibility that the pathological voice can be efficiently detected with only statistical information without heavy computations such as convolutional neural networks. Due to the simple structure, we expect this approach will be easily applied to a variety of mobile systems.
KSP Keywords
Convolution neural network(CNN), Deep neural network(DNN), Diagnosis system, Energy operator, Medical diagnosis, Mobile system, Pathological voice, Statistical information, Voice signal, feature extraction method, gradient boosting
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.