ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Deep Learning-based Classification with Improved Time Resolution for Physical Activities of Children
Cited 11 time in scopus Download 4 time Share share facebook twitter linkedin kakaostory
Authors
Jang Yongwon, Seunghwan Kim, 김기성, 이도헌
Issue Date
201810
Source
PeerJ, v.6, pp.1-23
ISSN
2167-8359
Publisher
PeerJ, Inc
DOI
https://dx.doi.org/10.7717/peerj.5764
Project Code
15MC4600, Development of smart calorie tracking technology and service business models for obesity management in child and youth, Seunghwan Kim
Abstract
Background. The proportion of overweight and obese people has increased tremendously in a short period, culminating in a worldwide trend of obesity that is reaching epidemic proportions. Overweight and obesity are serious issues, especially with regard to children. This is because obese children have twice the risk of becoming obese as adults, as compared to non-obese children. Nowadays, many methods for maintaining a caloric balance exist; however, these methods are not applicable to children. In this study, a new approach for helping children monitor their activities using a convolutional neural network (CNN) is proposed, which is applicable for real-time scenarios requiring high accuracy. Methods. A total of 136 participants (86 boys and 50 girls), aged between 8.5 years and 12.5 years (mean 10.5, standard deviation 1.1), took part in this study. The participants performed various movement while wearing custom-made three-axis accelerometer modules around their waists. The data acquired by the accelerometer module was preprocessed by dividing them into small sets (128 sample points for 2.8 s). Approximately 183,600 data samples were used by the developed CNN for learning to classify ten physical activities: slow walking, fast walking, slow running, fast running, walking up the stairs, walking down the stairs, jumping rope, standing up, sitting down, and remaining still. Results. The developed CNN classified the ten activities with an overall accuracy of 81.2%. When similar activities were merged, leading to seven merged activities, the CNN classified activities with an overall accuracy of 91.1%. Activity merging also improved performance indicators, for the maximum case of 66.4% in recall, 48.5% in precision, and 57.4% in f1 score. The developed CNN classifier was compared to conventional machine learning algorithms such as the support vector machine, decision tree, and k-nearest neighbor algorithms, and the proposed CNN classifier performed the best: CNN (81.2%) > SVM (64.8%) > DT (63.9%) > kNN (55.4%) (for ten activities); CNN (91.1%) > SVM (74.4%) > DT (73.2%) > kNN (65.3%) (for the merged seven activities). Discussion. The developed algorithm distinguished physical activities with improved time resolution using short-time acceleration signals from the physical activities performed by children. This study involved algorithm development, participant recruitment, IRB approval, custom-design of a data acquisition module, and data collection. The self-selected moving speeds for walking and running (slow and fast) and the structure of staircase degraded the performance of the algorithm. However, after similar activities were merged, the effects caused by the self-selection of speed were reduced. The experimental results show that the proposed algorithm performed better than conventional algorithms. Owing to its simplicity, the proposed algorithm could be applied to real-time applicaitons.
KSP Keywords
Acceleration Signals, Algorithm development, Convolution neural network(CNN), Custom-made, Data Acquisition(DAQ), Data Collection, Data acquisition module, Data samples, Decision Tree(DT), High accuracy, Learning-Based classification