As recent applications are requiring more CPUs for their performance, manycore systems have evolved. Since existing operating systems do not provide performance scalability in manycore systems, Azalea, a multi-kernel based system, has been developed for supporting performance scalability. Unikernel is a new operating system technology starting with the concept of a library OS. Applying unikernel to Azalea enables an improvement in performance. In this paper, we first analyze the current technology trends of unikernel, and then discuss the applications and effects of unikernel to Azalea. Azalea-unikernel was built in a single image consisting of libOS, runtime libraries, and an application, and executed with the desired number of cores and memory size in bare-metal. In particular, it supports source and binary compatibility such that existing linux binaries can be rebuilt and executed in Azalea-unikernel , and already built binaries can be run immediately without modification with a better performance. It not only achieves a performance enhancement, it is also a more secure OS for manycore systems.
KSP Keywords
Bare Metal, Current technology, Library OS, Many-core systems, Memory size, Multi-kernel, Performance and scalability, Single image, Technology trends, based system, operating system
This work is distributed under the term of Korea Open Government License (KOGL)
(Type 4: : Type 1 + Commercial Use Prohibition+Change Prohibition)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.