Content-Centric Networking (CCN) is a new networking paradigm for the future Internet, which shifts the communication paradigm from host-centric to data-centric. In CCN, contents are routed by their unique names and they are stored in network nodes by units of segment during transmission for future usage. Since contents are stored in network nodes in a distributed manner, security is built into CCN data packets by embedding a public key signature to enable any content requesters to verify authenticity and integrity of contents. However, the use of public key signatures for authenticating CCN data packets incurs significant overhead regarding computation and communication, which limits universal utilization of CCN. Furthermore, this can lead to a new kind of DDoS attacks. Even though CCN adopts an aggregate signature method based on Merkle Hash Tree (MHT) in its reference implementation, it still incurs large amount of overhead. This paper presents TLDA, an efficient Two-Layered Data Authentication mechanism, which can considerably reduce overhead of computation and communication for authenticating data segments in CCN. For efficiency of computation and communication, TLDA newly introduces the concept of authentication Meta part consisting of data segments' hash values. To a great extent TLDA not only reduces the computation and communication overhead compared with CCN's basic authentication method, but also provides robustness against transmission loss and out-of-order transmission. We have implemented TLDA and demonstrated that it provides 74.3% improved throughput and 36.557% reduced communication overhead compared to those of the original CCNx library developed by PARC when transmitting a 128Mbyte content in units of 1Kbyte segment with RSA-2048 and SHA-256 as its signature algorithm and hash algorithm, respectively.
KSP Keywords
Aggregate signature, Authentication method, Communication overhead, Communication paradigms, Content centric networking(CCN), DDoS attacks, Data Authentication, Data packet, Data-centric, Future Internet, Hash Algorithm
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.