Lithium metal is considered one of the most promising anode materials for realizing high volumetric and gravimetric energy density, owing to the high specific capacity (~3860 mAh g ?닋1 ) and the low electrochemical potential of lithium (?닋3.04 V vs. the standard hydrogen electrode). However, undesirable dendritic lithium growth and corresponding instability of the solid electrolyte interphase prevent safe and long-term use of lithium metal anodes. This paper presents a simple electrolyte approach to enhance the performance of lithium metal batteries by tuning the dielectric constant of the liquid electrolyte. Electrolyte formulations are designed by changing the concentration of ethylene carbonate to have various dielectric constants. This study confirms that high ethylene carbonate content in a liquid electrolyte enhances the cycling performance of lithium metal batteries because the electric field intensity applied to the electrolyte is reduced in relation to the polarization of the electrolyte and thus allows smooth lithium plating and formation of a stable solid electrolyte interphase. We believe that this approach provides an important concept for electrolyte system design suitable to lithium metal batteries.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.