Moving object detection (MOD) technology was combined to include detection, tracking and classification which provides information such as the local and global position estimation and velocity from around objects in real time at least 15혻fps. To operate an autonomous driving vehicle on real roads, a multi-sensor-based object detection and classification module should carry out simultaneously processing in the autonomous system for safe driving. Additionally, the object detection results must have high-speed processing performance in a limited HW platform for autonomous vehicles. To solve this problem, we used the Redmon in DARKNET-based (https://pjreddie.com/darknet/yolo) deep learning method to modify a detector that obtains the local position estimation in real time. The aim of this study was to get the local position information of a moving object by fusing the information from multi-cameras and one RADAR. Thus, we made a fusion server to synchronize and converse the information of multi-objects from multi-sensors on our autonomous vehicle. In this paper, we introduce a method to solve the local position estimation that recognizes the around view which includes the long-, middle- and short-range view. We also describe a method to solve the problem caused by a steep slope and a curving road condition while driving. Additionally, we introduce the results of our proposed MOD-based detection and tracking estimation to achieve a license for autonomous driving in KOREA.
KSP Keywords
Autonomous system, Autonomous vehicle, Carry out, Deep learning method, Detection and tracking, Driving conditions, Global position, High Speed, Local position, Moving Object Detection, Multi-Sensor
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.