For better deep learning forecasting systems for photovoltaic systems, confidence information about a point forecast is necessary in practical cases where uncertainties are unavoidable. In this study, using Bayesian deep learning, the authors introduce a confidence-aware deep learning forecasting system that provides confidence information as well as a point forecast. Through the experiments using the real-world data, they first solve three main issues caused by when Bayesian deep learning is applied to the forecasting of daily solar irradiance using weather forecast: selection of neural network model, selection of validation data to be used for estimating the confidence information, and ways for estimating the confidence information. Then, they examine the feasibility of the confidence-aware deep learning forecasting system in estimating the confidence information. From the experiments, classifying the forecast outputs into confident outputs and non-confident outputs using the confidence information, they show that maximum absolute percentage error of confident forecast outputs and non-confident forecast outputs are 5 and 22.8% at a specific classification threshold, respectively. This result shows that their confidence-aware deep learning forecasting system is good to estimate meaningful confidence information that is closely related to the forecast accuracy.
KSP Keywords
Confidence-Aware, Neural network model, Photovoltaic systems(PVS), Point forecast, Real-world data, Solar irradiance, Validation data, Weather Forecast, deep learning(DL), forecast accuracy, neural network(NN)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.