In this paper, a low-phase-noise self-sustaining amplifier IC with parallel capacitance cancellation for low-Q piezoelectric resonator is presented. The target of the proposed low-phase-noise self-sustaining amplifier IC is a mass-sensitive oscillator based on an AlN piezoelectric nanoresonator in liquid media. The behavioral model of the AlN piezoelectric nanoresonator is modeled as a damped second-order mass-spring-damper system with Verilog-A. The Verilog-A model enables the co-simulation of the oscillator nanosystem including the electronic sustaining amplifier circuit and the piezoelectric nanoresonator. The sustaining amplifier consists of two parts: transimpedance amplifier and shunt-capacitance cancelling amplifier. The shunt-capacitance cancellation and self-sustaining oscillation are critical in low-Q resonators, such as a mass sensor in liquid media. The shunt-capacitance-cancelling amplifier, which is a parasitic capacitance-canceller, supplies an inverted driving voltage to the nanoresonator to remove the wrong oscillation condition arising from the capacitance parallel to the nanoresonator. Near the resonant frequency, the motional inductance and motional capacitance of the nanoresonator are mutually cancelled, and the motional resistance are converted to the output voltage of the transimpedance amplifier. To remove the unwanted high-frequency poles, the amplifiers are designed using an inverter-based high-speed architecture with a 3혻GHz gain-bandwidth product. In this oscillator system, when the target mass is attached to the nanoresonator, the inductance is increased; thus, the oscillation frequency is decreased. The operation of the full nanosystem is modeled and simulated using the Verilog-A behavioral model. The nominal output frequency is 5혻MHz. The power consumption is 5혻mA with 1.8혻V supply voltage.
KSP Keywords
Amplifier circuit, Behavioral model, Co-simulation, Damper system, Gain-Bandwidth product, High Speed, High frequency(HF), Mass sensor, Motional resistance, Output Voltage, Output frequency
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.